PROACTIVE CONTROL

1ST COST SAVINGS

CONTROLLED CHILLED BEAM

PUMP MODULE

ENERGY SAVINGS
NEUTON™ is the HVAC industry’s first smart, plug-and-play controlled chilled beam pump module (CCBPM) for reducing chilled beam system installation and operational costs.

NEUTON™ is a factory-built and pre-tested package complete with its own powered integrated direct digital controller, chilled and hot water connections, valves, variable-speed electronically commutated motor (ECM) pumps, smart sensors, and other unique features. The device provides active condensation control effectively addressing one of the key design concerns regarding active chilled beams.
NEUTON™ is available in two configurations: NEUTON® has a single actuator for summer/winter switchover and NEUTON® uses dual actuators allowing for simultaneous heating and cooling.

Two configurations are available in two different pump capacities. NEUTON™ CCBPM-8-12, delivers 8 gallons per minute (gpm) of water flow and an external head pressure of 12 feet produced by the pump. NEUTON™ CCBPM-11-12 has the capacity of 11 gpm at 12 feet of head. Both use the same pump, but the Cv of the valves are different, allowing you to select the best NEUTON™ for the application.

OPTIMIZING CHILLED BEAMS.

- Active condensation control system effectively eliminates chilled beam condensation
- Reduces cost of a chilled beam installation by 30% or more by allowing for smaller pipe diameters, fittings and feet of pipe
- Cuts the amount of zone piping and fittings in half by removing the need for building-level secondary loops for the chilled beams
- Simplifies installation, controls, and beam system commissioning
- Increases beam cooling and heating output allowing all coil passes to be used for cooling and heating
- Eliminates the confusion and cost of customized controls development and installation
- Improved response to occupied/unoccupied and low load conditions - novel control sequences vary water flow and/or temperature, as needed, to accommodate changes in zone load conditions

Each configuration is available in low flow CCBPM-8-12 or high flow CCBPM-11-12.
The intuitiveness of NEUTON™ eliminates the expense of a separate chiller, boiler and secondary water distribution system associated with conventional chilled beam HVAC designs. Instead of expensive secondary piping loops, each NEUTON™ blends and re-circulates return water within its zone to convert typical 42°F and 140°F primary loop water temperatures to optimal 58°F or 100°F chilled beam discharge temperatures, which prevents cooling mode condensation and heating season heat stratification.

Each NEUTON™ can control up to 10 chilled beams, depending upon the water flow rate required.

When using the Pinnacle® dedicated outdoor air system in conjunction with active chilled beams controlled by the NEUTON™ pump module, important design advantages result including:

- Very high energy efficiency
- Very low primary airflow requirements
- Low noise levels
- Reduced filter maintenance – central location not room by room
- Ideal air distribution
- Improved indoor air quality – excellent outdoor air delivery
- Ideal humidity control
- Eliminates condensate management problems

Energy Use Comparison for Three Energy Efficient Systems:

The chart to the right shows energy modeling completed for a 200,000 sq.ft. high school. NEUTON™ pump modules combined with chilled beams result in the most energy efficient system available.
Substantial Pump Energy Savings Example

Standard efficiency pump (on/off) vs. high efficiency ECM variable speed pump served by the pump module control logic

A high-efficiency ECM motor combined with substantial power reduction offered by the NEUTON™ variable flow pump results in significant energy savings over a traditional, constant flow – on/off design approach.

- Three cooling conditions are analyzed above: peak coil cooling power (24,000 BTUs), 80% of peak (19,200 BTUs) and 60% of peak (14,400 BTUs).
- The constant speed pump operates to deliver a constant flow of 6 gpm at a 13 foot pressure head – cycled on and off during part load.
- The NEUTON™ ECM variable flow pump runs continuously, but varies the flow from 6 gpm down to 3 gpm, greatly reducing the pump energy used.

RESULTS: NEUTON™ USES AN AVERAGE OF 80% LESS PUMP ENERGY TO ACHIEVE THE SAME BEAM COOLING OUTPUT
SIMPLIFIED DESIGN.
STREAMLINED INSTALLATION.

- The zone pump, beam water temperature sensor, control valves, associated electrical and controls are all factory wired and tested
- Only field connections are smart sensor, BAS (if used) and main power (208/230/1Ph)
- On-board controls specifically developed and optimized for chilled beam zone control (plug and play)
- All pipe connections use swivel half-union adapters with face gasket designed to easily connect to standard 1” male fittings

Component Parts

1) Integrated electrical, DDC controls panel
2) Electronically Commutated Motor (ECM) high efficiency, variable speed pump
3) Hot water control valve
4) Chilled water control valve
5) Chilled water return
6) Hot water supply
7) Zone loop return connection
8) Chilled water supply
9) Hot water return
10) Zone supply water connection
11) Pete’s plugs for pressure and flow measurement
12) Zone supply water thermistor
13) Pump Isolation Valves
14) ZS Pro Sensor Zone Controller

Optional BacNet Communications Link (field wiring by contractor)
COOLING MODE
(4 pipe primary loop shown)

- The chilled water control valve slowly injects chilled water from the primary loop as recirculated secondary beam loop water is discharged through the check-valve into the primary chilled water return loop.
- The hot water control valve is in the full bypass position and the corresponding check valve is closed.
- Conventional 42°F chilled water can be utilized within a single primary loop to serve both the chilled beam zones and the dedicated outdoor air system.

HEATING MODE
(4 pipe primary loop shown)

- The hot water control valve slowly ejects a metered about of recirculated secondary beam loop water while the corresponding check-valve allows for injection of water from the hot water supply loop.
- The chilled water control valve is in the full bypass position and the corresponding check valve is closed.
- Conventional 120°F hot water can be utilized within a single primary loop to serve both the chilled beam zones and the dedicated outdoor air system.

Note: Only one of multiple beams in zone shown.
Traditional Beam Designs Require:

- Two primary loops are required for both cooling and heating to accommodate the DOAS and beams, requiring second chiller and boiler, plate frame heat exchangers or other modifications.
- Increased pipe size (substantial cost) required for beam loop due to moderate chilled and hot water temperatures required by the beams.
- Four pipe beam coils, with some coil passes allocated for cooling and others for heating.
- Piping at each zone needs to accommodate four piping runs - heating and cooling supply and return lines, valves and couplings.
- In each zone, contractor needs to install two control valves, condensation sensors, run power to all devices then communicate with space thermostat or BAS signals.
- Design engineer needs to develop a custom control algorithm then communicate this to the BAS subcontractor then debug.

Traditional Chilled Beam Piping Layout: Cooling Only
NEUTON™ Beam Designs Require:

- A single primary loop with all devices is served by the same traditional chilled and hot water temperatures (beam water temperature set by NEUTON™).
- Primary pipe size (cost) remains small since no change to the chilled or hot water temperatures is required (same temperature to beam zones as DOAS).
- Two pipe beam coils, with all passes allocated for cooling and heating
- Only a single supply and return piping run in each zone since two pipe coils are used (half that required by conventional approach)
- Contractor only needs to install the NEUTON™ and connect the smart sensor and power to the unit. All valves, DDC controller, electrical and software are factory installed and tested.
- No controls programming is needed. The optimized algorithms complete with BACnet® communications capabilities are standard with each NEUTON™.
- NEUTON™ installation is approximately 75% of the installed cost associated with traditional chilled beam systems while providing advanced controls and substantial energy savings.

NEUTON™ Chilled Beam Piping Layout: Heating and Cooling - 4 pipe system

![Diagram of NEUTON™ Chilled Beam Piping Layout](image-url)
Installation advantages with a 2 pipe system: Primary water loops only

When integrating NEUTON™ into a novel 2 pipe system layout, additional installation and cost advantages can be recognized. This approach not only reduces the pipe size during cooling and heating as before, but also cuts the length of pipe in half since NEUTON™ pulls water from and delivers it back to the same pipe loop.

This 2 pipe system approach still allows for the use of two pipe beams (same passes for heating and cooling), and provides the complete benefits of the 4 pipe approach.

NEUTON™ Chilled Beam Piping Layout: Heating and Cooling - 2 pipe system

![Diagram of NEUTON™ Chilled Beam Piping Layout]

- **BEAM LOOP** (multiple beams)
- **FAN COIL UNIT**
- **SEMCO NEUTON** (one of three)
- **PINNACLE DOAS**
- **PRIMARY PUMP**
- **CHILLER**
- **BOILER**

Temperatures shown in °F:
- 56°F
- 58°F
- 62°F
- 42°F
- 53°F
- 50°F
- 42°F
Impact on pipe diameter, pump size and loop installation cost

We can now compare the traditional 4 pipe approach with the novel 2 pipe layout combined with NEUTON™. This approach pulls cold water from the single cooling loop (for example) and discharges some quantity of return water back into the same loop. As a result, there is a consistent change in the supply chilled water temperature as it passes through the building. The change is a function of the load on the building. To ensure that there is adequate cooling power left in this loop for the chilled beams serving the last zones served by the loop, the water temperature at the end of the loop is controlled by varying the inlet water temperature and/or flow. The same approach is used for the single heating water loop employed.

Due to the need to control these end of the loop temperatures, the delta temperature between the beginning of the loop water and the end of the loop water is not as great as possible with the previous 4 pipe example utilizing NEUTON™, but the benefit here is a significant reduction in linear feet of pipe, fittings and installation required.

Summary table showing the installation advantage offered by NEUTON™ compared to the Traditional system using 4 pipe arrangements.

<table>
<thead>
<tr>
<th></th>
<th>Traditional (4 Pipe System)</th>
<th>NEUTON™ (4 pipe system)</th>
<th>NEUTON™ (2 pipe system)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Required</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling Loop</td>
<td>112 GPM</td>
<td>35 GPM</td>
<td>67 GPM</td>
</tr>
<tr>
<td>Heating Loop</td>
<td>31 GPM</td>
<td>6.5 GPM</td>
<td>14 GPM</td>
</tr>
<tr>
<td>Pump Power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling Loop</td>
<td>1.1 HP</td>
<td>.2 HP</td>
<td>.6 HP</td>
</tr>
<tr>
<td>Heating Loop</td>
<td>.2 HP</td>
<td>.04 HP</td>
<td>.06 HP</td>
</tr>
<tr>
<td>Pipe Diameter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling Loop</td>
<td>3”</td>
<td>2”</td>
<td>2”</td>
</tr>
<tr>
<td>Heating Loop</td>
<td>2”</td>
<td>1”</td>
<td>1.25”</td>
</tr>
<tr>
<td>Estimated Installation Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling Loop</td>
<td>$30,400</td>
<td>$16,600</td>
<td>$8,300</td>
</tr>
<tr>
<td>Heating Loop</td>
<td>$16,600</td>
<td>$7,240</td>
<td>$2,150</td>
</tr>
<tr>
<td>Secondary Loop (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hot and Cold</td>
<td>$18,000</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Total Installation Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$65,000</td>
<td>$23,840</td>
<td>$10,450</td>
</tr>
</tbody>
</table>

Note 1: Estimated cost associated with creating a separate secondary water loop to serve the chilled beams (cooling and heating). This would include plate frame heat exchanger, piping, valves and installation.
SEMCO® is a global leader in air management. We specialize in the design and manufacture of a wide range of air climate and air movement solutions. Our collective experience is unrivalled.

Our constant aim is to provide systems that precisely deliver the best indoor air quality and performance, as well as maximize energy efficiency.

SEMCO® A Fläkt Woods Company
Corporate Headquarters
1800 East Pointe Drive
Columbia, Missouri 65201 USA
573 443 1481
sales.semco@flaktwoods.com

To learn more about SEMCO offerings and to contact your nearest representative please visit

www.semcohvac.com

SEMCO embraces a policy of continuous development and improvement. The right is reserved to supply products which may differ from those illustrated and described in this publication. Certified dimensions will be supplied upon request on receipt of order.

© SEMCO LLC 2015 All Rights Reserved. SEMCO, Pinnacle and the SEMCO logo are registered Trademarks of SEMCO LLC.